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Abstract

The paper deals with the control of sub- and superharmonic resonances by means of magnetorheological (MR) dampers

of an inclined shallow cable caused by parametric excitation from harmonically varying support points. A mechanical

model based on the Dahl hysteretic model is used to describe the dynamic property of the MR damper, and the finite

difference method is used to discretize the derived governing nonlinear equations of motion of the cable–damper system.

Semi-active control strategies are proposed based on the modulated homogeneous friction (SA-1) algorithm and the

balance logic (SA-2) algorithm. Four cases are analysed when the circular frequency O of the support point motion is in the

vicinity of 2o1, o1, 2o1/3, and o1/2, o1 being the first in-plane eigenfrequency of the cable. The vibration reduction ability

of the MR damper is compared with that of the viscous damper optimally tuned to the first in-plane eigenmode of the

cable. The numerical results show that the MR damper with the SA-1 rule and the optimal viscous damper perform

similarly to mitigate the vibration of the cable under axial periodic support motion, and, in some cases, the SA-2 rule is

more favourable in suppressing the cable vibration compared with the SA-1 rule. In the final analysis, both the MR

damper and the viscous damper can effectively mitigate the out-of-plane component of the cable, while having little effect

on the reduction of the in-plane response in most cases. Furthermore, when the support motion amplitude is located in a

certain range for the case OE2o1/3, the original zero out-of-plane vibration of the cable should be changed to the stable

in-plane and out-of-plane coupled oscillation by using the optimal passive viscous damper or the MR damper with the

SA-1 rule. It is also observed that the vibrations of the cable become chaotic when the cable is supplied with the MR

damper using the proposed nonlinear control algorithms.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Cables are widely used as structural elements in bridges and as supports for masts and towers. Owing to
large flexibility, relatively small mass and extremely low inherent damping, cables are prone to excessive
vibrations, caused either by direct loads on the cable from wind or a combination of wind and rain, or by the
motion of the supported structures, such as bridge decks or towers [1]. In order to mitigate cable vibrations,
passive viscous dampers are often mounted at a distance of typically 2–4% of the span from one of the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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supports to provide external damping [2]. Kovacs [3] found that the maximum modal damping ratio, which
could be provided by the damper, was approximately equal to half the relative distance of the damper from the
support. Pacheco et al. [4] numerically developed a ‘‘universal estimation curve’’ of the normalized modal
damping ratio versus the normalized damper coefficient. Xu et al. [5] developed a hybrid method based on an
orthogonal transformation and a transfer matrix formulation using complex eigenfunctions to study the three-
dimensional vibration of inclined cable with oil dampers and to consider the influence of cable sag, cable
inclination and damper direction and others. Krenk [6] studied the problem of a taut cable with a concentrated
viscous damper and obtained an explicit asymptotic solution for the damping properties in terms of the
complex wavenumber. Krenk and Nielsen [7] extended the complex modal analysis to shallow cables and
obtained a rather accurate analytical approximation. Main and Jones [8] obtained the range of attainable
modal damping ratios and corresponding oscillation frequencies in every mode for a given damper location
without approximation. Theoretical and experimental studies of the active control of cable vibrations by
axial support motion and active tension control have also been studied [9–11]. However, a number of
implementation difficulties remain to be solved before a practical application is possible.

Semi-active dampers can offer active control without requiring the associated large power sources, and
moreover, semi-active dampers are fail-safe since they can serve as passive dampers if the power fails. Johnson et
al. [12] demonstrated that smart semi-active damping could provide 50–80% reduction in cable response
compared with the optimal passive linear damper. It should be noted that only the ideal semi-active damper is
used in Johnson’s study; hence, the indicated significant reduction could hardly be achieved in reality. However,
the study suggests that smart dampers could be an effective replacement for the passive viscous damping of
cables. One semi-active device that appears to be particularly promising is the magnetorheological (MR)
damper. Ni et al. [13] developed neural network control strategies corresponding to a full-order system model
and a reduced-order modal model for the semi-active vibration control of stay cables using MR dampers.
Recently, Zhou et al. [14] investigated the three-dimensional vibration control of an inclined sag cable with MR
dampers using a semi-active control strategy based on modulated homogeneous friction algorithm, and
compared the vibration reduction ability of an MR damper with that of an optimal viscous damper. The results
showed that, if only one vibration mode of the cable is excited, the vibration reduction effect by the MR damper
is close to that of a viscous damper optimally tuned to this mode; however, if two or more vibration modes of the
cable are excited, the MR damper performs better than the viscous damper. Christenson et al. [15] investigated
the damping capabilities of a shear MR damper attached to a 12.65m inclined flat-sag steel cable using H2/linear
quadratic Gaussian clipped control algorithm, and experimental results showed that the MR damper could
reduce uncontrolled cable response by more than 50%. The implementation of MR dampers to a cable-stayed
bridge and field measurement showed that the MR dampers could effectively mitigate cable vibration caused by
wind-and-rain excitation or by other excitation sources [16,17].

For cables used in cable-stayed bridges and TV towers, the primary external excitation is caused by the
motion of the support points of the cable rather than by external distributed dynamic loads. Perkins [18] used
a first-order perturbation method to study the parametric resonance due to chord elongation from the support
excitation using the eigenmodes of the parabolic approximation to the static equilibrium suspension as a
function basis. The emphasis was placed on cables with relatively large sag-to-chord-length ratios. Benedettini
et al. [19] investigated resonance phenomena of an elastic suspension cable subjected to both external loads
and forced support points motions. The corresponding experimental results [20,21] show that strong nonlinear
modal coupling between various symmetric and antisymmetric planar and nonplanar modes can exist, when
the cable parameters correspond to the first crossover.

Cables used as support of cable-stayed bridges and TV towers are often characterized by a sag-to-chord-
length below 0.02, which means that the lowest eigenfrequencies for the in-plane and out-of-plane
eigenvibration, o1 and o2, are very close. The dynamics of the cable are caused by the support point motions
at the bridge deck and at the tower. These motions may be decomposed into a component parallel to the chord
of the equilibrium suspension, and a component in the orthogonal direction. The chordwise components
introduce a chord elongation, which produces parametric excitation in the modal equations of motion in
combination with an external excitation of the equations of motion describing the in-plane motion. By
contrast, the support point motions in the orthogonal direction merely induce an external excitation of the
equations of motion. In case the support point motion is harmonically varying with the circular frequency o
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approximating o1, and both the in-plane and out-of-plane components of the cable perform harmonic
response with the same circular frequency, we shall talk about harmonic resonance. If o approx ko1, and
either the in-plane or the out-of-plane components of the cable perform harmonic resonant vibrations in the
fundamental eigenmode, we talk about subharmonic resonance, if k41, and of superharmonic resonance, if
ko1. The external excitation is the primary excitation during harmonic resonance, whereas the chord
elongation and the related parametric excitation are the main reason for sub- and super harmonic responses,
although these to some extent are caused by geometric nonlinearities as well. Coupling of the resulting
in-plane displacements to large out-of-plane motions is entirely due to geometric nonlinearities. Hence, the
complex response pattern observed in sub- and superharmonic responses of inclined cabled is caused by a
combination of parametric excitation from the chord elongation, and geometric nonlinearities in the cable
response. Since this paper deals with the ability of MR dampers to mitigate sub- and superharmonic
responses, the analysis will only consider the parametric excitation from the chord elongation. Nielsen and
Kirkegaard [22] investigated the superharmonic response for the case k ¼ 1

2
and 2

3
of an elastic cable with small

sag using a two-degree-of-freedom modal decomposition based on the lowest in-plane and out-of-plane
eigenmodes. Larsen and Nielsen [23] found that up to three stable periodic motions may co-exist for a shallow
cable under a harmonic support excitation using a reduced two-degree-of-freedom model and investigated the
triggering mechanism for transition between these three states, when the cable is subjected to support motions
described by a narrow-banded Gaussian process. Pinto da Costa et al. [24] studied oscillations in the plane
of the cable static equilibrium configuration of bridge stay cables subjected to periodic motions of the deck
and/or towers using the Galerkin method.

The MR dampers are installed in pairs to the cable to keep the damper system stable, in order to reduce
both in-plane and out-of-plane vibration components simultaneously. The finite difference method (FDM) is
used to discretize the derived governing nonlinear partial differential equations of the cable–damper system, in
which the cable sag, cable inclination, damper direction and other effects are taken into consideration. Semi-
active control strategies based on the modulated homogeneous friction algorithm and the balance logic are
investigated. Because only the displacement and velocity response of the MR dampers are required, the
proposed control rules are easy to implement. Especially, the four cases, where O approaches 2o1, o1, 2o1/3
and o1/2, will be analysed. The vibration reduction ability of MR dampers is verified numerically by
comparison with the optimal viscous damper tuned to the first in-plane eigenmode of the cable.

2. Mechanics of damper and cable

2.1. Mechanical model of MR damper

Based on experimental evidence, a simple and effective phenomenological model for MR dampers based on the
Dahl hysteretic model was developed by Zhou and Qu [25], see in Fig. 1. The Dahl model is adopted to simulate
the Coulomb force to reduce the number of parameters in comparison to the Bouc–Wen model [26]. Besides, the
modified Dahl model can capture the force-velocity relationship in the low-velocity region with sufficient accuracy.

The damper force is given by

F ¼ K0xþ C0 _xþ FdZ � f 0, (1)

where K0 is a stiffness, C0 is a viscous damping coefficient, Fd is the Coulomb force, and both C0 and Fd are
modulated by the applied magnetic field, x is the displacement of the MR damper, f0 is the offset force due to
Fig. 1. Modified Dahl model of the MR damper.
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the presence of the accumulator. Finally, Z is a nondimensional hysteretic variable governed by

_Z ¼ s _xð1� Z sgnð _xÞÞ, (2)

where s determines the hysteretic loop shape. In Eq. (1), the term ‘FdZ’ corresponds to a Coulomb friction force.
In order to calibrate the modified Dahl model under an applied fluctuating magnetic field, it is necessary to

obtain the functional dependence of the model parameters on the applied voltage (or current). When the applied
voltage is small enough so that no magnetic saturation occurs in MR fluid, the experimental results show that the
steady-state maximum output force generated by theMR damper appears to vary linearly with the applied voltage,
and has a nonzero initial value (i.e., at 0V). Thus C0 and Fd are related with the applied voltage as follows:

C0 ¼ C0s þ C0du; F d ¼ Fds þ Fddu, (3)

where C0s and Fds are the damping coefficient and the Coulomb force of the MR damper at zero field, respectively.
u is an intrinsic variable, which determines the dependence of the parameters on the applied voltage V. The
relationship between u and V is modelled by the first-order filter [26],

_u ¼ �Zðu� V Þ, (4)

where Z reflects the response time of the MR damper, so that larger Z implies shorter response time. V is the
applied voltage.

Therefore, the proposed MR damper model has a total of 8 parameters (C0s, C0d, Fds, Fdd, K0, s, f0 and Z)
and should be calibrated.

2.2. Equations of motion of cable

The motion equations of the cable with MR dampers are written in a local coordinate system as indicated in
Fig. 2. The local x coordinate is taken along the chord line while the y coordinate is in the gravity plane
orthogonal to the chord line. The cable is assumed to have a uniform cross-section along its length. Because
the profile is shallow, the longitudinal inertial forces and damping force may be neglected. Neglecting flexural
rigidity of the cable and external dynamic loading, the nonlinear dynamic equations of motion of the cable
with MR dampers can be expressed as [14]

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

x

p q
qx
ðH þ hÞ

qw

@x
þ hyx

� �
þ
XM
j¼1

Fdy;jdðx� xcjÞ ¼ m
q2w

qt2
þ c1

qw

qt
, (5)

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

x

p q
qx
ðH þ hÞ

qv

qx

� �
þ
XM
j¼1

Fdz;jdðx� xcjÞ ¼ m
q2v
qt2
þ c2

qv

qt
, (6)
Fig. 2. Schematic diagram of an inclined sag cable with MR dampers.
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where H and h are the components of the static and dynamic tension in the x direction, w and v are the
dynamic displacement components in the y and z directions measured from the static equilibrium position,
Fdy,j and Fdz,j are the forces generated by the jth MR damper on the cable at the location of xcj in the y and
z directions, respectively. l is the cable chord length, M is the total number of MR dampers, d is Dirac’s delta
function, m is the mass of the cable per unit length, t is the time, c1 and c2 are the in-plane and out-of-plane
internal damping coefficients of the cable, respectively. Finally, yx signifies the partial derivative of the static
curve y with respect to x.

It should be noted that the bending stiffness of the cable is neglected in the motion equations. In practice,
the position of the damper is relatively close to the lower support, so both the shear force in bending and the
rotation of the cable force may be expected to contribute to the transfer of the damper force to the support.
Let ~w denote the displacement of the cable at the damper. Then, the shear force from bending becomes
3EI ~w=½x2

cðl � xcÞ�, where EI is the bending stiffness of the cable, and the shear force from the rotation of the
cable becomes H ~w=xc. Hence the ratio of the former to the latter is 3EI=½Hxcðl � xcÞ�. In the vast majority of
cable problems, the indicated ratio is quite small, for example, with the data from the numerical example the
indicated ratio is about 0.00056. Hence, the effect of the bending stiffness can be ignored for the present case.
This is in agreement with a study by Tabatabai and Mehrabi [27], which concludes that the influence of the
bending stiffness on the damping performance for the vast majority of actual stay cables is quite unimportant.

Within the shallow cable approximation the static equilibrium curve y of the cable is approximated with the
parabola

y ¼
mgl2 cos y

2H

x

l
1�

x

l

� �h i
, (7)

where y is the angle of chord line with respect to the horizontal plane, see Fig. 2.
The additional dynamic cable tension can be assumed constant along the cable span, and can be expressed

as [28]

h
ds

dx

� �3

¼ EA
qu

qx
þ

dy

dx

qw

qx
þ

1

2

qw

qx

� �2

þ
1

2

qv

qx

� �2
" #

, (8)

where E is Young’s modulus, A is the cross sectional area, u is the dynamic displacement components in the
x direction and ds/dx is the reciprocal of the cosine of the angle subtended to the chord line by the tangent to
the profile.

The boundary conditions are

uð0; tÞ ¼ u1ðtÞ; uðl; tÞ ¼ u2ðtÞ, (9a)

wð0; tÞ ¼ w1ðtÞ; wðl; tÞ ¼ w2ðtÞ, (9b)

vð0; tÞ ¼ v1ðtÞ; vðl; tÞ ¼ v2ðtÞ. (9c)

Then, the three components of the displacements u, w and v can be expressed in the form

uðx; tÞ ¼ usðx; tÞ; wðx; tÞ ¼ wsðx; tÞ þ wd ðx; tÞ; vðx; tÞ ¼ vsðx; tÞ þ vdðx; tÞ, (10)

where us(x,t), ws(x,t) and vs(x,t) are pseudo-static displacements fulfilling the boundary conditions (9), and
wd(x,t) and vd(x,t) are the residual dynamic displacements fulfilling homogeneous boundary conditions.

The pseudo-static displacement is taken as [29]

usðx; tÞ ¼ 1�
x

l

� �
u1ðtÞ þ

x

l
u2ðtÞ, (11a)

wsðx; tÞ ¼ 1�
x

l

� �
w1ðtÞ þ

x

l
w2ðtÞ, (11b)

vsðx; tÞ ¼ 1�
x

l

� �
v1ðtÞ þ

x

l
v2ðtÞ. (11c)
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Substituting Eqs. (10) and (11) into Eqs. (5) and (6), and omitting c1qwsðx; tÞ=qt and c2qvsðx; tÞ=qt, Eqs. (5)
and (6) can be formulated in the residual dynamic displacements as

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

x

p q
qx
ðH þ hÞ

qwd

qx
þ hyx

� �
þ
XM
j¼1

Fdy;jdðx� xcjÞ ¼ m
q2wd

qt2
þ c1

qwd

qt
þm

q2ws

qt2
, (12)

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

x

p q
qx
ðH þ hÞ

qvd

qx

� �
þ
XM
j¼1

Fdz;jdðx� xcjÞ ¼ m
q2vd

qt2
þ c2

qvd

qt
þm

q2vs

qt2
. (13)

Substituting Eqs. (10) and (11) into Eq. (8), performing the integration over l and discarding the differentials
of high orders result in

hLe

EA
¼ ðu2 � u1Þ þ

mg cos y
H

Z l

0

wd dxþ
1

2

Z l

0

dwd

dx

� �2

dxþ
1

2

Z l

0

dvd

dx

� �2

dx, (14)

where Le denotes the so-called effective cable length [28]

Le ¼

Z l

0

ds

dx

� �3

dx �

Z l

0

1þ
3

2

dy

dx

� �2
 !

dx ¼ l 1þ 8
f

l

� �2
" #

, (15)

where f is the sag at mid-span

f ¼
mgl2 cos y

8H
. (16)

As seen from Eq. (14), the dynamic cable force accounts for coupling between in-plane and out-of-plane
motions as described by Eqs. (12) and (13).

2.3. Damper forces

The displacement and velocity of the MR damper anchored at the points C and D are related to the cable
responses at their joint of action E given by the following algebraic equations:

X C
_X C

X D
_X D

" #
¼

cos a sin g1 �sin a sin g1 cos g1
cos a sin g2 �sin a sin g2 �cos g2

" # �sin y 0

cos y 0

0 1

2
64

3
75 wdðxcjÞ _wdðxcjÞ

vdðxcjÞ _vdðxcjÞ

" #
, (17)

where the angles a, g1 and g2 defined in Fig. 2 specify the directions CE and DE. It is worthwhile to point out
that in Eq. (17) only the residual dynamic response of the cable at point E is affecting the dynamic response of
the MR damper, because as shown from Eq. (11) the pseudo-static response of point E (see Fig. 2) is
approximately equal to the motion of the dampers anchorage points C and D.

With the displacement and velocity of the MR dampers known, the output force Fd,C and Fd,D can easily
be obtained from Eqs. (1) and (2). Then, the two components of Fd,C and Fd,D in the y and z directions are
given by

F dy;C Fdy;D

F dz;C Fdz;D

" #
¼
�sin y cos y 0

0 0 1

� � �cos a sin g1 �cos a sin g2
sin a sin g1 sin a sin g2
�cos g1 cos g2

2
64

3
75 F d;C 0

0 F d;D

" #
. (18)

2.4. Discretization of differential equation

The finite difference method is applied to discretize the nonlinear partial differential equations (12) and (13).
The cable length is partitioned into n segments of equal length with x0 ¼ 0 and xn ¼ l. The interval distance
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between the ith and (i+1)th nodes is a ¼ l/n. Using the central difference algorithm, the derivatives of the
dynamic displacement component at the ith node can be expressed as

q2wd

qx2

� �
i

¼
1

a2
ðwd;iþ1 � 2wd;i þ wd;i�1Þ;

q2vd

qx2

� �
i

¼
1

a2
ðvd ;iþ1 � 2vd;i þ vd ;i�1Þ. (19)

The last two terms of the right-hand side of Eq. (14) can be given as [14]

1

2

Z l

0

dwd

dx

� �2

dx ¼
1

a

Xn�1
j¼1

w2
d ;j �

Xn�2
j¼1

wd ;jwd ;jþ1

" #
, (20a)

1

2

Z l

0

dvd

dx

� �2

dx ¼
1

a

Xn�1
j¼1

v2d ;j �
Xn�2
j¼1

vd ;jvd;jþ1

" #
. (20b)

Substituting Eqs. (19), (20) into Eqs. (12–14) yields the following ordinary differential equations:

m €wd ;i þ c1 _wd;i þ f 1;i �
XM
j¼1

F dy;jdðx� xcjÞ þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
x;i

q l2H

l3
a
Xn�1
j¼1

wd;j

þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
x;i

q H þ
EA

Le

ðu2 � u1Þ

� �
1

a2
ðwd ;iþ1 � 2wd ;i þ wd;i�1Þ

¼ �m
q2ws

qt2
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

x;i

q mg cos y
H

EA

Le

ðu2 � u1Þ, ð21Þ

m€vd;i þ c1 _vd;i þ f 2;i �
XM
j¼1

F dz;jdðx� xcjÞ

þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
x;i

q H þ
EA

Le

ðu2 � u1Þ

� �
1

a2
ðvd ;iþ1 � 2vd;i þ vd ;i�1Þ ¼ �m

q2vs

qt2
, ð22Þ

where f1,i and f2,i are nonlinear terms given as

f 1;i ¼ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
x;i

q EA

aLe

mg cos y
H

ðwd;iþ1 � 2wd;i þ wd;i�1Þ
Xn�1
j¼1

wd;j

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
x;i

q EA

a3Le

ðwd;iþ1 � 2wd;i þ wd;i�1Þ
Xn�1
j¼1

w2
d ;j �

Xn�2
j¼1

wd;jwd ;jþ1

" #
þ

Xn�1
j¼1

v2d ;j �
Xn�2
j¼1

vd ;jvd;jþ1

" #" #

þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
x;i

q EA

aLe

mg cos y
H

Xn�1
j¼1

w2
d;j �

Xn�2
j¼1

wd ;jwd;jþ1

" #
þ

Xn�1
j¼1

v2d;j �
Xn�2
j¼1

vd;jvd;jþ1

" #" #
, ð23Þ

f 2;i ¼ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
x;i

q EA

aLe

mg cos y
H

ðvd ;iþ1 � 2vd;i þ vd;i�1Þ
Xn�1
j¼1

wd;j

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
x;i

q EA

a3Le

ðvd;iþ1 � 2vd ;i þ vd;i�1Þ
Xn�1
j¼1

w2
d ;j �

Xn�2
j¼1

wd;jwd ;jþ1

" #
þ

Xn�1
j¼1

v2d ;j �
Xn�2
j¼1

vd ;jvd;jþ1

" #" #
, ð24Þ
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l2 is the nondimensional Irvine parameter for sag extensibility given as [28]

l2 ¼
mgl cos y

H

� �2

l
EA

HLe

. (25)

The nonlinear equations of dynamic equilibrium (21) and (22) are solved by an incremental-iterative algorithm
based on the Newmark beta algorithm in combination with Newton–Raphson iteration [30].

3. Control strategies

3.1. Semi-active control based on modulated homogeneous friction algorithm (SA-1)

Essentially, the MR damper can be considered as a variable friction damper. Inaudi [31] proposed a control
strategy for the design of semi-active friction controllers, the so-called modulated homogeneous friction
algorithm, which produces dissipation of energy per cycle equal to the square of the deformation amplitude
and maximum dissipation efficiency for the resistance–force level proportional to the deformation. In this
control algorithm, the control friction force for the ith MR damper is proportional to the absolute value of the
previous local peak of the damper deformation signal, that is,

Ni ¼ bi P½X iðtÞ�
		 		, (26)

where bi40 is the controller gain, P[Xi(t)] is the local peak of the displacement of the MR damper prior to the
current time t, defined as

P½X iðtÞ� ¼ X iðt� sÞ; s ¼ min t̄X0 :
dX iðt� t̄Þ

dt
¼ 0


 �
, (27)

s is time interval between the immediate previous local peak and the current time t. After Ni is obtained, and if
Z is large enough, from Eq. (4) it can be assumed that u is approximately equal to V, so according to Eq. (3b),
the required voltage for the MR damper is given by

V i;need ¼
Ni � Fds;i

Fdd ;i
. (28)

The applied voltage to the MR damper has a range from 0 to Vmax. So the semi-active control strategy takes
the following form:

Vi ¼

0; V i; needo0;

V i; need; 0pV i; needpVmax;

Vmax; V i; need4Vmax:

8><
>: (29)

3.2. Semi-active control based on balance logic algorithm (SA-2)

In order to control machinery foundations or vehicles using semi-active dry friction damping, Stammers and
Sireteanu [32] proposed the so-called balance logic algorithm. The basic idea of this strategy is to reduce the
elastic and damping force resultants across the controlled object by forcing the damping force to balance the
elastic force, when these forces act in the opposite direction, i.e., when x _xo0, and by setting the damping force
to a minimum value when x _x40. The controllable friction force for the ith MR damper can then be expressed as

Ni ¼
bi X ij j; X i

_X ip0;

0; X i
_X i40;

(
(30)

where X and _X are displacement and velocity of the ith MR damper, and bi40 is the controller gain. Given Ni,
the required voltage for the MR damper can be obtained using Eqs. (28) and (29).

It should be noted that the main purpose of using the SA-1 rule is to dissipate as much as possible of the input
energy, while the main purpose of using the SA-2 rule is to reduce or balance the elastic force acting on the cable.
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From Eqs. (26) and (30), it can be seen that the implementation of the indicated control strategies only
requires the measurements of the displacement and the velocity of the MR dampers.

Compared with other control algorithms based on the optimal control theory [33], such as the linear
quadratic regulator (LQR) algorithm, and the instantaneous optimal control algorithm, the proposed
semi-active control algorithm has some advantages. The most important merit is the easy implementation
because only the local dynamic responses (displacement and velocity) of the MR dampers are required.
However, the controller gain should be properly determined through numerical parameter studies for a
given structure.

4. Simplified model

For simplicity, the cable with a pair of dampers at x ¼ xc with the same dynamic characteristics
is considered. The in-plane and out-of-plane displacement of the cable can be approximated using a finite
series

wdðx; tÞ ¼
Xn

j¼1

pjðtÞfjðxÞ; vdðx; tÞ ¼
Xn

j¼1

qjðtÞfjðxÞ, (31)

where the pj(t) and qj(t) are generalized displacements and the fj(x) are a set of shape functions that are
continuous with piecewise continuous slope and that satisfy the geometric boundary conditions. Johnson et al.
[34] has pointed out that if only sinusoidal shape functions are adopted, then hundreds of shape functions are
required to obtain a true solution. While using a linear combination of the static deflection shape and the first
sine term, the obtained solution closely approximates the first mode of the cable–damper system. Therefore, it
may be worthwhile to point out that in the simplified analysis the shape function based on the deflection due to
a static unit force at the damper location should be included to avoid some unreliable conclusions. In this
analysis, only two shape functions are used as [34]

f1ðxÞ ¼
x=xc 0pxpxc

ðl � xÞ=ðl � xcÞ xcpxpl

(
; f2ðxÞ ¼ sin

px

l
, (32)

where f1(x) is the normalized deflection due to a static force at the damper location and f2(x) is the first
out-of-plane eigenmode of a taut cable (Irvine parameter l2 ¼ 0). Substituting Eqs. (31) and (32) into
Eqs. (12)–(14), using a standard Galerkin approach gives

m½A�2�2 ½0�2�2

½0�2�2 m½A�2�2

" #
€P

� 

þ

c1½A�2�2 ½0�2�2

½0�2�2 c2½A�2�2

" #
_P

� 

þ ðH þ hÞ

½B�2�2 ½0�2�2

½0�2�2 ½B�2�2

" #
Pf g

þ h
mg cos y

H
fdg4�1 �

Fdyfgg2�1

Fdzfgg2�1

( )
¼ f0g4�1, ð33Þ

where ( � ) denotes partial derivatives with respect to t, Fdy and Fdz are the resultant forces generated by
dampers in the y and z directions, respectively, and

½A�2�2 ¼

l

3

sin pz
zð1� zÞ

l

p2

sin pz
zð1� zÞ

l

p2
l

2

2
6664

3
7775; ½B�2�2 ¼

1

lzð1� zÞ
sin pz

lzð1� zÞ
sin pz

lzð1� zÞ
p2

2l

2
6664

3
7775, (34a)

fPg ¼ p1 p2 q1 q2

h iT
; fdg ¼ l=2 2l=p 0 0

h iT
; fgg ¼ 1 sinpz

� �T
, (34b)

h ¼
EA

l
u2 � u1 þ

mg cos y
H

fdgTfPg þ
EA

2l
fPgT

½B�2�2 ½0�2�2

½0�2�2 ½B�2�2

" #
fPg

" #
; z ¼ xc=l. (34c)
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If neglecting all second- and third-order terms, in other words, ignoring the in-plane and out-of-plane
components interaction terms, Eq. (33) can be reduced to

m½A�2�2 ½0�2�2

½0�2�2 m½A�2�2

" #
f €Pg þ

c1½A�2�2 ½0�2�2

½0�2�2 c2½A�2�2

" #
f _Pg þ H þ

EA

l
u

� � ½B�2�2 ½0�2�2

½0�2�2 ½B�2�2

" #
fPg

þ
EA

l

mg cos y
H

� �2 ½C�2�2 ½0�2�2

½0�2�2 ½0�2�2

" #
fPg �

F dyfgg2�1

Fdzfgg2�1

( )
¼ �

EA

l

mg cos y
H

ðu2 � u1Þfdg4�1, ð35Þ

where

½C�2�2 ¼
l2=4 l2=p

l2=p 4l2=p2

" #
. (36)

Eq. (35) can be approximately considered as a Mathieu-type equation. The parametric excitation takes place
in the stiffness term via the chord elongation u2–u1.

Ideal variable viscous dampers are considered, whose adjustable damping coefficient C̄ is either Cvvd or zero
according to some control rule. Here, the balance logic control rule is selected, and the gain coefficient b is
assumed to be positive infinite for simplification, that is,

C̄ ¼
Cvvd; X _Xp0;

0; X _X40:

(
(37)

In general, the direction of the installed dampers is set to be a+y ¼ 901 and g1 ¼ g2 ¼ 451, which can provide
the same maximum modal damping ratios to both planes vibration modes [35]. Substituting these angles into
Eqs. (17) and (18), the resultant damping forces generated by variable viscous dampers in the y and z

directions are given by

Fdy

Fdz

( )
¼
� 1

2
ðC̄C þ C̄DÞ

1
2
ðC̄C � C̄DÞ

1
2
ðC̄C � C̄DÞ � 1

2
ðC̄C þ C̄DÞ

" #
_p1 þ _p2 sinpz

_q1 þ _q2 sinpz

( )
, (38)

where C̄C and C̄D are the viscous coefficients of dampers anchored at the points C and D, respectively.
According to Eq. (37), these two coefficients are defined as

C̄C ¼
Cvvd; ðw̄� v̄Þð _̄w� _̄vÞp0;

0; ðw̄� v̄Þð _̄w� _̄vÞ40;

(
C̄D ¼

Cvvd; ðw̄þ v̄Þð _̄wþ _̄vÞp0;

0; ðw̄þ v̄Þð _̄wþ _̄vÞ40;

(
(39)

where

w̄ _̄w

v̄ _̄v

" #
¼

1 sinpz 0 0

0 0 1 sinpz

" #
fPg f _Pg
h i

. (40)

When a pair of passive viscous dampers with the same viscous coefficient is used, Eq. (38) can be reduced to

Fdy

Fdz

( )
¼
�C̄ 0

0 �C̄

" #
_p1 þ _p2 sinpz

_q1 þ _q2 sinpz

( )
. (41)

After {P} is solved, the in-plane and out-of-plane displacement at the midpoint of the cable can be obtained
from

wd jx¼ l
2
¼

0:5

1� z
p1 þ p2; vd jx¼ l

2
¼

0:5

1� z
q1 þ q2. (42)
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Table 1

Natural frequencies of in-plane and out-of-plane modes of cable

Mode order Natural circular frequency (rad/s) Remark

In-plane Out-of-plane

1 3.201 3.148 Symmetric mode

2 6.295 6.295 Antisymmetric mode

3 9.445 9.443 Symmetric mode

4 12.590 12.590 Antisymmetric mode

5 15.738 15.738 Symmetric mode

6 18.886 18.886 Antisymmetric mode

Table 2

Parameters of MR damper

C0s (N s/m) C0d (N s/m/V) Fds (N) Fdd (N/V) K0 (N/m) s (m�1) f0 (N) Z (s�1)

2.4� 104 3.6� 103 2.0� 103 1.5� 104 3.0� 104 5.0� 104 0.0 200
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5. Numerical simulations

The data of the considered cable refers to the longest stay in the cable-stayed bridge across the +resund
between Denmark and Sweden. The stiffness of the cable is EA ¼ 2.17� 109N, and the equilibrium force
H ¼ 5.5� 106N. The chord length is 260.0m, the cable mass per unit length is m ¼ 81.05 kg/m and the
inclination y is 30.41. The nondimensional Irvine parameter is l2 ¼ 0.414.

The lower circular eigenfrequencies of the in-plane and out-of-plane modes are given in Table 1. The modal
damping ratios of the in-plane and out-of-plane modes are both taken as 1.0%, and the corresponding viscous
damping constants of in-plane and out-of-plane vibrations, c1 and c2, can be obtained by

c1 ¼ 2xo1m; c2 ¼ 2xo2m. (43)

To achieve the maximum possible reduction of dynamic response of the cable in both in-plane and out-of-
plane vibrations, a pair of MR dampers are installed symmetrically to the cable at the position (l–xcj) ¼ l/30,
with the damper directions g1 ¼ g2 ¼ 451, and a ¼ 59.61. The angle a is chosen in a way that the damper forces
are acting normal to the chord line of the inclined cable, which can be regarded as an optimum direction [35].
Based on the model test performance in Ref. [25], the selected parameters of the MR damper are listed in
Table 2, and the adjustable voltage range is from 0 to –7V.

To validate the vibration reduction effect of the MR dampers, the dynamic response analysis with an
optimal viscous damper is also performed. The installation pattern of the viscous dampers is the same as that
of the MR dampers. The optimal normalized damper size for the first in-plane mode is given by [4,6]

Copt ¼

ffiffiffiffiffiffiffiffi
Hm
p

pxj=l
� 0:1

mlo1

xj=l
. (44)

Then, the optimum damping coefficient Copt is taken as 2.024� 105N s/m.
After extensive numerical analysis, it can be found that there exists an optimal controller gain b in semi-

active control rule. For the given cable, the optimal gain b is 5.0� 105 for SA-1 and 6.0� 105 for SA-2,
respectively, and both optimal gains are fixed in the following research.

The cable is divided into 30 or 60 elements to check convergence. The corresponding subharmonic
displacement response at the mid-span of the cable with MR dampers subjected to a harmonic support point
motion is shown in Fig. 3. It can be seen that calculation with 30 elements provides sufficient accuracy, which
henceforth will be used in the analysis.
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Fig. 4. Subharmonic response, k ¼ 2. Trajectories at the midpoint. U ¼ 0.08m, O ¼ 2o1. 1: original cable. 2: optimal viscous damper.

3: MR damper using SA-1. 4: MR damper using SA-2.

Fig. 3. Displacement response at the midpoint as a function of number of elements. U ¼ 0.15m, O ¼ 2o1. Solid line: n ¼ 30. Dashed line:

n ¼ 60.
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The chordwise elongation is produced by applying the harmonic motion at support point B, while the other
support point is set to zero.

The initial out-of-plane displacement in Eq. (22) is taken as

vijt¼0 ¼ vd ;ijt¼0 ¼ dms sinðpxi=lÞ, (45)

where xi is the coordinate of the ith node in the x direction and dms is the out-of-plane displacement at the
mid-span of the cable. In the following analysis dms is set to be 1.0m.

5.1. Subharmonic response, OE2o1

When the out-of-plane motion of the cable is prevented, Zhou et al. [14] found that when the harmonic
frequency of the chord elongation is in the neighbourhood of two times the first natural frequency of the cable,
and the amplitude of the chord elongation does not exceed a certain threshold value, the MR damper with the
SA-1 control rule can prevent the development of subharmonic excitations, whereas the viscous damper fails
to do so. However, if the motion amplitude exceeds the said threshold value, large subharmonic vibrations
occur in both cases.
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Therefore, the focus in this study will be on the coupled motion between the in-plane and the out-of-plane
components. In Fig. 4, the trajectory at the midpoint of the undamped cables has been shown as curve 1. As
seen, the out-of-plane component performs large harmonic vibrations with half the frequency of the
excitation, indicating a subharmonic resonance of the order k ¼ 2. By contrast the in-plane component is
performing harmonic oscillations with the same frequency as the excitations, making the trajectory of the
shape as an infinity sign possible. The amplitude of the in-plane harmonic response is small, because the
excitation frequency is far away from the fundamental resonance frequency.

At first, the amplitude U of the chord elongation is chosen as 0.08m. The trajectories of wd and vd at the
midpoint of the cable are shown in Fig. 4. It can be seen that both the viscous damper and the MR damper can
suppress the out-of-plane vibration to some extent. In the case of original cable without dampers, the peak
value of the out-of-plane component vmax is 292.7 cm. For the cable with the optimal viscous dampers and
with the MR dampers using the SA-1 control rule, vmax is reduced to 163.2 and 157.9 cm, respectively, which
means that the dampers can provide about 45% reduction compared with the original cable. Compared with
the viscous damper, the MR damper with the SA-1 rule only provides 3.2% reduction effect. However, when
adopting the SA-2 control rule, vmax is only 7.3 cm, which are only about 1/40 compared with vmax of the
undamped cable. On the other hand, the peak-to-peak value of the in-plane response is amplified after
the dampers are installed. For the original cable, the value is about 5.2 cm, while it is increased to 9.3 cm for
the viscous damper, 9.4 cm for the MR damper with the SA-1 rule and 10.1 cm for the MR damper with the
SA-2 rule. However, the amplitude of the in-plane response is two orders of magnitude less than that of the
out-of-plane component. Therefore, the increase of the in-plane peak-to-peak value has minute influence on
the control effect of the damper. Fig. 5 shows the force–displacement relation of the MR damper anchored at
the points C and E with different control rules. It can be seen that the MR damper with the SA-1 rule can
dissipate much more energy than that with the SA-2 rule. It should be noted that the steady-state variable
range of the applied voltage for the MR damper is 2.0–2.7 V by the SA-1 rule and 0–0.035V by the SA-2 rule,
respectively, that is, if the varied level of the applied voltage is small, then the force–displacement curves of the
semi-active MR damper look like that of the MR damper with a constant applied voltage.

It should be noted that the viscous damper is tuned to the first in-plane eigenmode of the cable. As
mentioned above, for a cable with a sag-to-chord-length ratio below 0.02, the natural frequencies for the
in-plane and out-of-plane vibrations are pairwise close (see Table 1). In other words, the viscous damper is
also tuned to the first out-of-plane eigenmode simultaneously. When O ¼ 2o1, the out-of-plane vibration is
dominated by the first eigenmode. In view of this, the viscous damper was expected to provide a more
satisfactory vibration reduction effect than observed in Fig. 4. By contrast, the MR dampers with the SA-2
rule provide a 95.5% reduction compared with the viscous damper. In order to explain this, an ideal variable
viscous damper mentioned in Section 4 is used with Cvvd ¼ Copt.
Fig. 5. Subharmonic response, k ¼ 2. Force–displacement relationship of the MR damper linking the points C and E. U ¼ 0.08m,

O ¼ 2o1. (a) SA-1 rule; (b) SA-2 rule.
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Fig. 6. Subharmonic response, k ¼ 2. Displacement response at the midpoint. U ¼ 0.08m, O ¼ 2o1. Solid line: optimal passive viscous

damper. Dashed line: ideal variable viscous damper.

Fig. 7. Subharmonic response, k ¼ 2. Trajectories at the midpoint. U ¼ 0.15m, O ¼ 2o1. 1: original cable. 2: optimal viscous damper. 3:

MR damper using SA-1. 4: MR damper using SA-2.
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The out-of-plane responses at the mid-span of the cable with the variable viscous dampers and with the
passive viscous dampers are shown in Fig. 6. It can be seen that the variable viscous damper works very well,
and the out-of-plane component will disappear eventually. The point is that the variable viscous damper and
the passive optimal viscous damper are two different methods to reduce the dynamic response. The main
function of the former is to reduce or balance the elastic force acting on the cable, while that of the latter is to
dissipate as much as possible of the input energy. Although the passive optimal viscous damper can dissipate
much more input energy than the variable viscous damper, the latter is far superior to the former as can be
seen from Fig. 6. In other words, the control strategy to balance the elastic force acting on the cable is more
effective than to dissipate the input energy. When the balance logic algorithm is used, the controllable force
should be zero in case of x _xo0 to achieve the best control effect, see Eq. (30). For the MR damper, even if the
applied voltage is zero, the output force is rarely zero, whereas the output force produced by the ideal variable
viscous damper can be zero. Therefore, in this respect, the ideal variable viscous damper is superior to the MR
damper when using the SA-2 rule.

Next, the amplitude U is increased to 0.15m. The trajectories at the midpoint of the cable are shown in
Fig. 7. It can be seen that for the undamped cable, vmax is 369.0 cm. For the cable with the optimal viscous
dampers and with the MR dampers using the SA-1 and SA-2 control rules, vmax is reduced to 307.5, 310.0 and
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Fig. 8. Subharmonic response, k ¼ 2. Displacement response at the midpoint. U ¼ 0.15m, O ¼ 2o1. Solid line: optimal passive viscous

damper. Dashed line: ideal variable viscous damper.

Fig. 9. Solution of Mathieu–Hill equation using different damper. U ¼ 0.08m, O ¼ 2o1. (a) Passive viscous damper. (b) Ideal variable

viscous damper.
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342.8 cm, respectively. Compared with the original cable, the viscous damper and the MR damper with the
SA-1 rule can provide about 16% reduction, while the MR damper with the SA-2 rule only offers 7%
reduction. It can be seen that the peak-to-peak value of the in-plane component increases again. Further, the
multilined appearance of the trajectories for the SA-1 and SA-2 rules suggests some chaotic response of the
cable in these control cases. Fig. 8 shows the out-of-plane response at the mid-span with the variable viscous
dampers and the passive viscous dampers, respectively. It can be seen that the vibration reduction effect by the
balancing elastic force method and that by the dissipating input energy method is very close.

Using the given data, Fig. 9 shows the out-of-plane displacement at the midpoint by solving the Mathieu
type Eq. (35) with the ideal variable viscous damper and the optimal passive viscous damper, when the
amplitude of the chord elongation is 0.08m. It can be seen that the variable viscous damper makes the
vibration decay while the passive viscous damper gives an unstable solution. If the excitation amplitude is
further increased, then both dampers will lead to unstable solutions. Therefore, this implies that the balance
logic rule will decrease the unstable range of the Mathieu equation compared with the energy dissipation rule.
So this may be a physical explanation as to why the SA-2 rule is much better than the SA-1 rule under smaller
excitation amplitudes while both rules give similar control effect under larger excitation amplitudes. It should
be noted that the ‘unstable’ in here only means that the solution of Eq. (35) is divergent and does not stand for
the actual response of the cable–damper system. In fact, when the nonlinear terms are considered, Eq. (33)
will give both stable periodic solutions for the cable with variable and passive viscous dampers with U ¼ 0.08
and 0.15m.
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Fig. 10. Subharmonic response, k ¼ 2. Trajectories at the midpoint. U ¼ 0.40m, O ¼ 2o1. 1: original cable. 2: optimal viscous damper.

3: MR damper using SA-1. 4: MR damper using SA-2.

Fig. 11. Subharmonic response, k ¼ 2. Poincaré map at the midpoint response with the MR damper using the SA-2 rule. U ¼ 0.15m,

O ¼ 2o1.
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Finally, the amplitude U is increased to 0.40m. The trajectories at the midpoint of the cable are illustrated in
Fig. 10. It can be seen that the maximum values of the out-of-plane vibration of the cable without the damper,
with the viscous damper and with the MR damper using the different control strategies are rather close.
Hence, neither the viscous damper nor the MR damper has any capability to dissipate the dynamic response of
the cable in this case. Again, some chaotic behaviour is noticed for the various control strategies of the MR
dampers.

From the FDM equations (21) and (22), it can be observed that with the increase of the support motion
amplitude, the dynamic response of the original cable increases. However, the position where the dampers are
installed approaches closely the end of the cable; consequently, the output force generated by the dampers is
restricted. So, on the whole, the vibration reduction effect provided by the dampers attenuates with the
increase of the excitation amplitude, as shown in Figs. 4 and 7.

From Figs. 4 and 7 it is also concluded that the vibration reduction effect by the MR damper with the SA-1
rule is close to that by the viscous damper. The reason is that according to the maximum energy dissipation
principle the viscous damper is tuned to the first eigenmode of the cable, which is the main mode of the out-of-
plane vibration, and the main principle of the SA-1 rule is to absorb as much as possible the input energy.
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Fig. 12. Subharmonic response, k ¼ 2. Poincaré map at the midpoint response with the ideal variable viscous damper. U ¼ 0.15m,

O ¼ 2o1.

Fig. 13. Harmonic response, k ¼ 1. In-plane displacement response at the midpoint. O ¼ o1. (a) U ¼ 0.08m; (b) U ¼ 0.40m. Solid thin

line: original cable. Dashed line: optimal viscous damper. Dotted line: MR damper using SA-1. Solid thick line: MR damper using SA-2.

Q. Zhou et al. / Journal of Sound and Vibration 311 (2008) 683–706 699
In order to investigate the chaotic behaviour of the MR damper with the SA-2 control rule, the Poincaré
map has shown in Fig. 11 when U is 0.15m. It can be seen that the chaotic behaviour of the subharmonic out-
of-plane component is moderate, whereas the harmonic in-plane vibration is completely chaotic. The Poincaré
map of the variable viscous damper is shown in Figs. 12. The out-of-plane component is less chaotic, whereas
the strong chaotic behaviour of the in-plane component occurs. Therefore, it is obvious that the chaotic
phenomenon of the cable is mainly caused by the nonlinear semi-active control strategies.

5.2. Harmonic response, OEo1

At first, the chord elongation amplitude U is set to 0.08m. The in-plane displacement time history at the
midpoint is shown in Fig. 13(a). The peak value of the in-plane component wmax of the original cable is
225.3 cm. After the viscous damper and the MR damper are installed, the dynamic response is mitigated
effectively, and wmax is reduced to about 159.8, 151.5 and 138.0 cm, respectively. In other words, dampers can
provide about 29%, 33% and 39% reduction compared with the original cable, respectively. So the MR
damper with the SA-2 rule is better than the optimal viscous damper. For the original cable and for the cable
with viscous damper, the out-of-plane component will disappear eventually. By contrast, the MR dampers are
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not able to eliminate the out-of-plane component completely. The reason is that although these two MR
dampers are installed symmetrically at the same node of the cable, the displacements and hence the control
signals for each MR damper are different because the motion of the cable is three-dimensional (see Eq. (17)).
Therefore, the out-of-plane component of the resultant force provided by the MR dampers does always exist,
which leads to the nonzero out-of-plane vibration.

Next, the amplitude U is increased to 0.40m. Fig. 13(b) shows the in-plane response of the cable.
The peak value of the original cable, of the cable with viscous dampers and of the cable with MR dampers
using the different control rules are 446.3, 416.8, 411.6 and 435.8 cm, respectively, and in the best
situation only about 7.8% reduction can be obtained by the damper compared with the original cable.
The out-of-plane vibration of the cable without dampers and with viscous dampers will fade away after
enough time. Once again, however small it is, there is an out-of-plane response of the cable supplied with the
MR damper.
5.3. Superharmonic response, OE2o1/3

At first, the amplitude U is set to 0.08m. The numerical results show that only the in-plane vibration exists
for both the undamped and the viscous-damped cable, so only the in-plane responses are shown in Fig. 14(a).
For the undamped cable, the cable with viscous dampers, the cable with MR dampers using the SA-1 and SA-
2 rules, the peak values of in-plane vibration are 23.0, 22.2, 22.2 and 22.8 cm, respectively. Therefore, neither
the viscous damper nor the MR damper essentially has any capability to suppress the vibrations of the cable.
As mentioned above, a small out-of-plane vibration component of the cable with MR dampers still exists.

Next, the amplitude U is increased to 0.40m. Again, the superharmonic response is in-plane, as shown in
Fig. 14(b). It can be seen that on the whole the viscous damper and the MR damper with the various control
rules have little effect on the attenuation of the dynamic response of the cable.

Then the amplitude U is increased to 0.55m. It is interesting to find that only in-plane vibration exists for the
original cable and the MR dampers with the SA-2 rule, while the cable with the viscous dampers and the MR
dampers with the SA-1 rule has a stable in-plane and out-of-plane coupled oscillation, as shown in Fig. 15. It
can be seen that the maximum out-of-plane components for the latter two are almost the same, which is about
347.2 cm. The in-plane vibration is effectively mitigated by using dampers, and the peak-to-peak value is
reduced from 642.2 cm for the original cable to 312.1 cm (viscous dampers), 306.5 cm (MR dampers with the
SA-1 rule) and 397.3 cm (MR dampers with the SA-2 rule), respectively. Then, on the whole, the best control
effect can be obtained using the MR dampers with the SA-2 rule. It is also clear in this case that the control
concept based on energy dissipation has the maximum vibration reduction effect for the in-plane oscillation,
which is achieved at a cost of a stable large-amplitude out-of-plane component.
Fig. 14. Superharmonic response, k ¼ 2
3
. In-plane displacement response at the midpoint. O ¼ 2o1/3. (a) U ¼ 0.08m; (b) U ¼ 0.40m.

Solid thin line: original cable. Dashed line: optimal viscous damper. Dotted line: MR damper using SA-1. Solid thick line: MR damper

using SA-2.
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Fig. 15. Superharmonic response, k ¼ 2
3. U ¼ 0.55m, O ¼ 2o1/3. (a) Trajectories at the midpoint. 1: optimal viscous damper. 2: MR

damper using SA-1. (b) In-plane displacement response at the midpoint. Solid thin line: original cable. Dashed line: optimal viscous

damper. Dotted line: MR damper using SA-1. Solid thick line: MR damper using SA-2.

Fig. 16. Superharmonic response, k ¼ 2
3
. Trajectories at the midpoint. U ¼ 0.65m, O ¼ 2o1/3. 1: original cable. 2: optimal viscous

damper. 3: MR damper using SA-1. 4: MR damper using SA-2.
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Finally, the amplitude U is further increased to 0.65m. In this case, the original cable is attracted to a
motion with a stable out-of-plane component. Fig. 16 shows the trajectories at the midpoint of the cable. It
can be seen that both the viscous damper and the MR damper can suppress the out-of-plane vibration of the
cable somewhat. For the undamped cable the peak value of the out-of-plane component vmax is 486.8 cm, and
that of the in-plane vibration wmax is 174.8 cm. For the cable with the viscous dampers and with the MR
dampers using the SA-1 rule, vmax is reduced to 444.0 and 440.6 cm, and wmax is increased to 185.9 and
199.0 cm, respectively. Hence, both viscous damper and MR damper with the SA-1 rule have little effect on the
attenuation of the vibration of the cable. When adopting the SA-2 control rule, the out-of-plane vibration is
significantly suppressed, and vmax is less than 2.0 cm, while wmax increases as evidently as to 470.3 cm.
Therefore, on the whole the control rule based on the balance logic principle is more effective than the control
algorithm whose purpose is to dissipate the maximum amount of input energy.

Substituting the given data in the simplified Eq. (35), and U, is set to 0.55 and 0.65m, respectively, it can be
found that in both cases the out-of-plane vibration of the cable decays for the original cable and the cable with
the passive or variable viscous dampers. However, when the in-plane and out-of-plane components interaction
terms are considered, that is, Eq. (33) is used, it can be seen that when U ¼ 0.55 cm the periodic out-of-plane
component of the cable exists only for the cable with the passive viscous dampers and when U ¼ 0.65 cm only
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Fig. 17. Superharmonic response, k ¼ 2
3
. Trajectories at the midpoint. U ¼ 0.75m, O ¼ 2o1/3. (a) Solutions of simplified equation (33).

(b) Solutions of FDM equations (21) and (22). Solid line: original cable. Dashed line: cable with ideal variable viscous dampers.
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the cable with the variable viscous dampers is two-dimensional oscillation. Therefore, it can be concluded that
the out-of-plane response of the original cable with OE2o1/3 is mainly caused by two factors: one is that the
amplitude of harmonic support motion exceeds a certain threshold, the other is the interaction between the in-
plane and out-of-plane components, which is neglected in Eq. (35). Then, in order to reduce the out-of-plane
component of the cable for OE2o1/3 with larger support motion amplitude, it is important to suppress the in-
plane and out-of-plane coupled vibration of the cable. Comparing the solutions obtained by Eq. (33) for the
cable with variable dampers and that with passive dampers, it is obvious that mitigating the elastic force acting
on the cable can effectively reduce the coupled motion while improperly improving the damping of the cable
may augment the interaction in some cases.

Moreover, when OE2o1/3 and U ¼ 0.75m, the solutions of Eq. (33) for the cable with and without variable
viscous dampers illustrate that both vibration is three-dimensional oscillation, and the trajectories at the
midpoint are shown in Fig. 17, which also can be obtained by the rather complicated FDM Eqs. (21) and (22).
The difference of solutions between these two models is mainly caused by the ignorance of higher modes in the
simplified model. From Fig. 17 it can be deduced that the MR damper with the SA-2 rule has no vibration
reduction effect on the out-of-pane component caused by superharmonic response when OE2o1/3 and
U ¼ 0.75m. Therefore, the satisfactory control effect of out-of-plane vibration by the MR damper with the
SA-2 rule can be achieved only when the support motion amplitude falls in a certain range, which is similar to
the subharmonic response when OE2o1. To some extent, the control effect provided by the MR damper with
the SA-2 rule on the out-of-plane component of the cable under the support motion with U ¼ 0.65 and 0.75m
when OE2o1/3 corresponds to that with U ¼ 0.08 and 0.15m when OE2o1, respectively.

Using the simplified equations. (33) and (35), it can be observed that there are two main differences for the
trigger mechanism of out-of-plane vibration of cable without dampers when the support motion frequency is
about 2o1 and 2o1/3. One is that for OE2o1, small support motion amplitude can result in out-of-plane
motion, while for OE2o1/3 only excitation amplitude exceeds a large threshold the out-of-plane motion is
possible. The other is that for OE2o1 the large out-of-plane component is mainly caused by Mathieu-type
parametric oscillation while for OE2o1/3 the out-of-plane component is mainly induced by the in-plane and
out-of-plane components interaction.

5.4. Superharmonic response, OEo1/2

At first, the amplitude U is set to 0.08m. Numerical results show that only the in-plane stable
superharmonic vibrations of the undamped cable and the cable with viscous dampers exist, so only the in-
plane response is shown in Fig. 18. The peak values of in-plane vibrations for the original cable, for the cable
with viscous dampers and with MR dampers using the SA-1 and SA-2 rules are about 60.1, 30.6, 30.8 and
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Fig. 18. Superharmonic response, k ¼ 1
2
. In-plane displacement response at the midpoint. U ¼ 0.08m, O ¼ o1/2. Solid thin line: original

cable. Dashed line: optimal viscous damper. Dotted line: MR damper using SA-1. Solid thick line: MR damper using SA-2.

Fig. 19. Superharmonic response, k ¼ 1
2
. U ¼ 0.40m, O ¼ o1/2. (a) Trajectory at the midpoint of the original cable. (b) In-plane

displacement response at the midpoint. Solid thin line: original cable. Dashed line: optimal viscous damper. Dotted line: MR damper using

SA-1. Solid thick line: MR damper using SA-2.
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31.6 cm, respectively. Therefore, both the viscous damper and the MR damper have an effect in mitigating the
dynamic response. Moreover, the vibration reduction effect provided by the viscous damper and the MR
damper is comparable.

Next, U is increased to 0.40m. Fig. 19(a) shows the trajectory at the midpoint of the original cable. The
peak value of the out-of-plane component vmax is 184.4 cm, and that of the in-plane component is
wmax ¼ 352.0 cm. After the viscous dampers are equipped, the out-of-plane vibration is eliminated. For the
MR damper, the nonzero out-of-plane component remains for the above-mentioned reason. However, the
peak value of the out-of-plane component is less than 6.0 cm. Therefore, the influence of the out-of-plane
vibration at the midpoint of the cable can be neglected compared with the in-plane component. Fig. 19(b)
shows the in-plane response of the cable. It can be seen that the viscous damper and the MR damper using the
different control algorithms provide comparable results. wmax for the viscous damper and for the MR damper
with the different control rules are about 325.3, 313.9 and 327.9 cm, respectively. Therefore, as far as the
in-plane vibration reduction is concerned, neither the viscous damper nor the MR damper has any significant
effect on the reduction of the superharmonic response. Using the simplified model (33), it also can be found
that the out-of-plane component of the cable with the passive or variable viscous dampers disappear
eventually even for U ¼ 0.75m.
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Fig. 20. Normalized amplitude spectrum of in-plane vibration at the midpoint of the original cable. U ¼ 0.08m. (a) OEo1; (b) OE2o1/3;

(c) OEo1/2.
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When the support motion frequency is about o1, 2o1/3 and o1/2, Fig. 20 displays the normalized amplitude
spectrum of the in-plane component at the midpoint of the original cable with U ¼ 0.08m. It can be observed
that when OEo1 and o1/2 most vibration energy concentrate at o1, that is, the in-plane vibration is
dominated by the first in-plane symmetric mode, while when OE2o1/3 most vibration energy focus at 2o1/3.
This may be the reason as to why the control effect provided by the damper is insignificant for OE2o1/3 but
satisfactory for OEo1 and o1/2 with smaller support motion amplitude, as shown in Figs. 13(a), 14(a) and 18.

By the way, it should be noted that the simplified model (33), in which the in-plane and out-of-plane
oscillation interaction is taken into consideration, covers some essential dynamic properties of the cable with
and without dampers.

6. Conclusions

The control of the sub- and superharmonic responses of an inclined shallow cable with MR dampers under
harmonic support motion is investigated. Semi-active control strategies based on the modulated homogeneous
friction (SA-1) rule and the balance logic (SA-2) rule are proposed. The main goal of the former is to dissipate
as much as possible of the input energy, while that of the latter is to reduce or balance the elastic force acting
on the cable. Because only the displacement and the velocity responses of the MR dampers are required, the
proposed control rules are easy to implement.

In particular the four cases, where the harmonic frequency of the support point motion O approaches 2o1,
o1, 2o1/3, and o1/2, are analysed. The vibration reduction ability with MR dampers is verified by comparison
with the optimal viscous damper tuned to the first in-plane eigenmode of the cable. The numerical results show
that the MR damper with the SA-1 rule and the optimal viscous damper perform similarly to suppress the
vibration of the cable under periodic chord elongation, and, in some cases, the SA-2 rule is more favourable
than the SA-1 rule in mitigating the out-of-plane vibration of the cable. The optimal viscous damper and the
MR damper with the proposed control rules can effectively mitigate the out-of-plane vibration of the cable for
the subharmonic case OE2o1 with a rather small excitation amplitude and the superharmonic case OEo1/2
with a larger excitation amplitude. Especially, in the subharmonic case OE2o1 with a small excitation
amplitude, and in the superharmonic case OE2o1/3 with a rather large excitation amplitude falling in a
certain range, the SA-2 control rule is much better than the SA-1 rule and the optimal viscous damper in
suppressing the out-of-plane vibrations. Moreover, when OE2o1/3 the control strategy should be selected
carefully. Contrary to the common viewpoint, when the amplitude of the harmonic support motion falls in a
certain range, the vibration mode of the cable should be changed from the original zero out-of-plane vibration
to the stable periodic large amplitude out-of-plane response by using the optimal passive viscous dampers or
the MR dampers with the control algorithm based on energy dissipation criterion. In addition, the in-plane
component only during the harmonic response OEo1 and the superharmonic response OEo1/2 can be
effectively reduced by the MR damper and the viscous damper, if the excitation amplitude is sufficiently small.
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It is also observed that the vibrations of the cable become chaotic when the cable is supplied with the MR
damper using the proposed nonlinear control algorithms.
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